Resumen
This paper proposes a mixed-integer linear programming (MILP) model that is implemented based on a rolling horizon scheme to solve an aggregate production planning decision problem of a manufacturing company that produces snacks in Monterrey, Mexico. The demand of the company is characterized by trends and seasonality. The proposed solution is evaluated by means of computational experiments to determine the relation between demand uncertainty and flexibility of a production system. A 2k factorial experimental design and a multivariate regression were performed. Results show forecast bias and length of frozen period in the rolling horizon have a strong effect on total profit. The safety stock level was also found to be a significant factor, depending on the level of bias.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Production Research - 10th International Conference of Production Research - Americas, ICPR-Americas 2020, Revised Selected Papers |
Editores | Daniel Alejandro Rossit, Fernando Tohmé, Gonzalo Mejía Delgadillo |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 85-96 |
Número de páginas | 12 |
ISBN (versión impresa) | 9783030763060 |
DOI | |
Estado | Publicada - 2021 |
Evento | 10th International Conference of Production Research - Americas, ICPR-Americas 2020 - Virtual, Online Duración: 9 dic. 2020 → 11 dic. 2020 |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1407 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | 10th International Conference of Production Research - Americas, ICPR-Americas 2020 |
---|---|
Ciudad | Virtual, Online |
Período | 9/12/20 → 11/12/20 |
Nota bibliográfica
Publisher Copyright:© 2021, Springer Nature Switzerland AG.