A novel multi-class SVM model using second-order cone constraints

Julio López, Sebastián Maldonado, Miguel Carrasco

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

In this work we present a novel maximum-margin approach for multi-class Support Vector Machines based on second-order cone programming. The proposed method consists of a single optimization model to construct all classification functions, in which the number of second-order cone constraints corresponds to the number of classes. This is a key difference from traditional SVM, where the number of constraints is usually related to the number of training instances. This formulation is extended further to kernel-based classification, while the duality theory provides an interesting geometric interpretation: the method finds an equidistant point between a set of ellipsoids. Experiments on benchmark datasets demonstrate the virtues of our method in terms of predictive performance compared with various other multicategory SVM approaches.
Idioma originalInglés estadounidense
Páginas (desde-hasta)457-469
Número de páginas13
PublicaciónApplied Intelligence
Volumen44
N.º2
DOI
EstadoPublicada - 1 mar. 2016

Palabras clave

  • Multi-class classification
  • Second-order cone programming
  • Support vector machines

Huella

Profundice en los temas de investigación de 'A novel multi-class SVM model using second-order cone constraints'. En conjunto forman una huella única.

Citar esto