A hidden Markov model for the dynamics of diffusing dissipative solitons

Tony Albers, Jaime Cisternas, Günter Radons

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)


We investigate the dynamics of dissipative solitons in the cubicquintic complex Ginzburg-Landau equation in one spatial dimension for different values of the bifurcation parameter μ. We consider a certain range of the parameter μ where dissipative solitons show explosions, i.e. transient enlargements of the soliton that lead to spatial shifts if the explosions are asymmetric. We find that depending on the parameter μ, the arising sequence of spatial shifts can be modeled by a simple anti-persistent random walk or by a more complicated hidden Markov model. We show with the help of exact analytical calculations that these models are able to reproduce several statistics of the soliton motion such as the distribution of spatial shifts, the correlation of spatial shifts, and the distribution of zig-zag streaks.
Idioma originalInglés estadounidense
PublicaciónJournal of Statistical Mechanics: Theory and Experiment
EstadoPublicada - 10 sep. 2019

Palabras clave

  • correlation functions
  • diffusion
  • dissipative systems
  • nonlinear dynamics


Profundice en los temas de investigación de 'A hidden Markov model for the dynamics of diffusing dissipative solitons'. En conjunto forman una huella única.

Citar esto