A feasible direction algorithm for nonlinear second-order cone programs

Alfredo Canelas, Miguel Carrasco*, Julio López

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

In this work, we present a new feasible direction algorithm for solving smooth nonlinear second-order cone programs. These consist of minimizing a nonlinear smooth objective function subject to some nonlinear second-order cone constraints. Given an interior point to the feasible set defined by the conic constraints, the algorithm generates a feasible sequence with monotone decreasing values of the objective function. Under mild assumptions, we prove the global convergence of the algorithm to KKT points. Finally, we present some computational results applied to several instances of randomly generated benchmark problems and robust support vector machine classification.
Idioma originalInglés
Páginas (desde-hasta)1322-1341
Número de páginas20
PublicaciónOptimization Methods and Software
Volumen34
N.º6
DOI
EstadoPublicada - 2 nov. 2019

Nota bibliográfica

Publisher Copyright:
© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Huella

Profundice en los temas de investigación de 'A feasible direction algorithm for nonlinear second-order cone programs'. En conjunto forman una huella única.

Citar esto