A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty

Rodrigo Astroza*, Andrés Alessandri, Joel P. Conte

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

69 Citas (Scopus)


This paper proposes a novel approach to deal with modeling uncertainty when updating mechanics-based nonlinear finite element (FE) models. In this framework, a dual adaptive filtering approach is adopted, where the Unscented Kalman filter (UKF) is used to estimate the unknown parameters of the nonlinear FE model and a linear Kalman filter (KF) is employed to estimate the diagonal terms of the covariance matrix of the simulation error vector based on a covariance-matching technique. Numerically simulated response data of a two-dimensional three-story three-bay steel frame structure with eight unknown material model parameters subjected to unidirectional horizontal seismic excitation is used to illustrate and validate the proposed methodology. Geometry, inertia properties, gravity loads, and damping properties are considered as sources of modeling uncertainty and different levels and combinations of them are analyzed. The results of the validation studies show that the proposed approach significantly outperforms the parameter-only estimation approach widely investigated and used in the literature. Thus, a more robust and comprehensive identification of structural damage is achieved when using the proposed approach. A different input motion is then considered to verify the prediction capabilities of the proposed methodology by using the FE model updated by the parameter estimation results obtained.
Idioma originalInglés
Páginas (desde-hasta)782-800
Número de páginas19
PublicaciónMechanical Systems and Signal Processing
EstadoPublicada - 15 ene. 2019

Nota bibliográfica

Publisher Copyright:
© 2018 Elsevier Ltd


Profundice en los temas de investigación de 'A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty'. En conjunto forman una huella única.

Citar esto