TY - JOUR
T1 - 1400W Prevents Renal Injury in the Renal Cortex But Not in the Medulla in a Murine Model of Ischemia and Reperfusion Injury
AU - Pasten, Consuelo
AU - Lozano, Mauricio
AU - Méndez, Gonzalo P.
AU - Irarrázabal, Carlos E.
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG.
PY - 2022/10/19
Y1 - 2022/10/19
N2 - Background/Aims: Acute kidney injury (AKI) carries high morbidity and mortality, and the inducible nitric oxide synthase (iNOS) is a potential molecular target to prevent kidney dysfunction. In previous work, we reported that the pharmacological inhibitions of iNOS before ischemia/reperfusion (I/R) attenuate the I/R-induced AKI in mice. Here, we study the iNOS inhibitor 1400W [N-(3-(Aminomethyl)benzyl] acetamide, which has been described to be much more specific to iNOS inhibition than other compounds. Methods: We used 30 minutes of bilateral renal ischemia, followed by 24 hours of reperfusion in Balb/c mice. 1400w (10 mg/ kg i.p) was applied before I/R injury. We measured the expression of elements associated with kidney injury, inflammation, macrophage polarization, mesenchymal transition, and nephrogenic genes by qRT-PCR in the renal cortex and medulla. The Periodic Acid-Schiff (PAS) was used to study the kidney morphology. Results: Remarkably, we found that 1400W affects the renal cortex and medulla in different ways. Thus, in the renal cortex, 1400W prevented the I/R-upregulation of 1. NGAL, Clusterin, and signs of morphological damage; 2. IL-6 and TNF-α; 3. TGF-β; 4. M2(Arg1, Erg2, cMyc) and M1(CD38, Fpr2) macrophage polarization makers; and 5. Vimentin and FGF2 levels but not in the renal medulla. Conclusion: 1400W conferred protection in the kidney cortex compared to the kidney medulla. The present investigation provides relevant information to understand the opportunity to use 1400W as a therapeutic approach in AKI treatment.
AB - Background/Aims: Acute kidney injury (AKI) carries high morbidity and mortality, and the inducible nitric oxide synthase (iNOS) is a potential molecular target to prevent kidney dysfunction. In previous work, we reported that the pharmacological inhibitions of iNOS before ischemia/reperfusion (I/R) attenuate the I/R-induced AKI in mice. Here, we study the iNOS inhibitor 1400W [N-(3-(Aminomethyl)benzyl] acetamide, which has been described to be much more specific to iNOS inhibition than other compounds. Methods: We used 30 minutes of bilateral renal ischemia, followed by 24 hours of reperfusion in Balb/c mice. 1400w (10 mg/ kg i.p) was applied before I/R injury. We measured the expression of elements associated with kidney injury, inflammation, macrophage polarization, mesenchymal transition, and nephrogenic genes by qRT-PCR in the renal cortex and medulla. The Periodic Acid-Schiff (PAS) was used to study the kidney morphology. Results: Remarkably, we found that 1400W affects the renal cortex and medulla in different ways. Thus, in the renal cortex, 1400W prevented the I/R-upregulation of 1. NGAL, Clusterin, and signs of morphological damage; 2. IL-6 and TNF-α; 3. TGF-β; 4. M2(Arg1, Erg2, cMyc) and M1(CD38, Fpr2) macrophage polarization makers; and 5. Vimentin and FGF2 levels but not in the renal medulla. Conclusion: 1400W conferred protection in the kidney cortex compared to the kidney medulla. The present investigation provides relevant information to understand the opportunity to use 1400W as a therapeutic approach in AKI treatment.
KW - 1400W
KW - Inflammation
KW - Ischemia/reperfusion injury
KW - Macrophages polarization
UR - http://www.scopus.com/inward/record.url?scp=85140148320&partnerID=8YFLogxK
U2 - 10.33594/000000577
DO - 10.33594/000000577
M3 - Article
C2 - 36259161
AN - SCOPUS:85140148320
SN - 1015-8987
VL - 56
SP - 573
EP - 586
JO - Cellular Physiology and Biochemistry
JF - Cellular Physiology and Biochemistry
IS - 5
ER -