Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds

Cristian A. Acevedo, Elizabeth Sánchez, Paulo Díaz-Calderón, Jonny J. Blaker, Javier Enrione, Franck Quero

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

In this study, synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal, and sorption properties of porous chitosan/gelatin/hyaluronic acid hybrid foams are reported. Fourier transform infrared spectroscopy has been utilized to confirm the covalent attachment of hyaluronic acid to gelatin and chitosan, and covalent chemical crosslinking between gelatin and chitosan. Detailed image analysis of scanning electron microscopy images of the porous scaffold hydrids reveal that the pore size of the materials formulated using either low- or high-molecular-weight chitosan increases significantly upon crosslinking using ethyl(dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide. These microstructural changes are even more pronounced for the crosslinked hybrid scaffolds formulated using low-molecular-weight chitosan, highlighting a synergistic effect between crosslinking and the use of low-molecular-weight chitosan. Results obtained using differential scanning calorimetry demonstrate a significant reduction in molecular mobility reduction in molecular mobility for crosslinked scaffolds formed using high-molecular-weight chitosan compared to non-crosslinked hybrids and crosslinked hybrids formulated using low-molecular-weight chitosan. Correspondingly, dynamic vapor sorption evidenced significantly lower water vapor sorption for crosslinked scaffolds formulated using high-molecular-weight chitosan.

Original languageEnglish
Article number44772
JournalJournal of Applied Polymer Science
Volume134
Issue number18
DOIs
StatePublished - 10 May 2017

Bibliographical note

Funding Information:
The authors gratefully acknowledge financial support from Conicyt Programa PCI/Newton Picarte Grant N? 140144. J. E., C. A. and F.Q. acknowledge, respectively, financial support from Fondecyt under the Regular Grants N? 1140132 and N? 1160311, and the Postdoctoral Grant N? 3140036.

Publisher Copyright:
© 2017 Wiley Periodicals, Inc.

Keywords

  • biopolymers
  • chitosan
  • crosslinking
  • hybrid
  • molecular weight
  • scaffold

Fingerprint

Dive into the research topics of 'Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds'. Together they form a unique fingerprint.

Cite this