TY - JOUR
T1 - Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-Fenton process performed in semicontinuous operation
AU - Vidal, Jorge
AU - Carvajal, Andrea
AU - Huiliñir, Cesar
AU - Salazar, Ricardo
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/12/15
Y1 - 2019/12/15
N2 - A new semicontinuous anaerobic digestion/solar photoelectro-Fenton (SPEF) process for the treatment of slaughterhouse wastewater is studied. An Upflow Anaerobic Sludge Blanket (UASB) reactor was used at two different organic load rates (OLR) (3.94 and 8.15 g COD L−1 d−1), while the SPEF was carried out in a photoelectrochemical reactor using a filter press cell with a DSA anode and an air diffusion cathode. The results showed that the UASB reactor achieved up to 70% COD removal for the highest OLR, with a low efficiency of suspended solid removal. The anaerobic effluent was treated by the SPEF process, resulting in 88% and 72% COD removal for the initial concentrations of 195 ± 14 mg L−1 and 867 ± 52 mg L−1, respectively, and a turbidity reduction of up to 80%. The treatment of wastewater by SPEF using a current density of 10 mA cm−2 was five times less costly than that of 25 mA cm−2, with an associated cost of 1.4 USD h−1 for the treatment. The proposed semicontinuous processes eliminate at least 91% of the total COD, thus representing a new option for the treatment of slaughterhouse wastewater.
AB - A new semicontinuous anaerobic digestion/solar photoelectro-Fenton (SPEF) process for the treatment of slaughterhouse wastewater is studied. An Upflow Anaerobic Sludge Blanket (UASB) reactor was used at two different organic load rates (OLR) (3.94 and 8.15 g COD L−1 d−1), while the SPEF was carried out in a photoelectrochemical reactor using a filter press cell with a DSA anode and an air diffusion cathode. The results showed that the UASB reactor achieved up to 70% COD removal for the highest OLR, with a low efficiency of suspended solid removal. The anaerobic effluent was treated by the SPEF process, resulting in 88% and 72% COD removal for the initial concentrations of 195 ± 14 mg L−1 and 867 ± 52 mg L−1, respectively, and a turbidity reduction of up to 80%. The treatment of wastewater by SPEF using a current density of 10 mA cm−2 was five times less costly than that of 25 mA cm−2, with an associated cost of 1.4 USD h−1 for the treatment. The proposed semicontinuous processes eliminate at least 91% of the total COD, thus representing a new option for the treatment of slaughterhouse wastewater.
KW - Anaerobic digestion
KW - Combined processes
KW - Slaughterhouse wastewater
KW - Solar photoelectro-Fenton process
KW - UASB reactor
UR - http://www.scopus.com/inward/record.url?scp=85068509971&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.122097
DO - 10.1016/j.cej.2019.122097
M3 - Article
AN - SCOPUS:85068509971
SN - 1385-8947
VL - 378
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 122097
ER -