Abstract
A new semicontinuous anaerobic digestion/solar photoelectro-Fenton (SPEF) process for the treatment of slaughterhouse wastewater is studied. An Upflow Anaerobic Sludge Blanket (UASB) reactor was used at two different organic load rates (OLR) (3.94 and 8.15 g COD L−1 d−1), while the SPEF was carried out in a photoelectrochemical reactor using a filter press cell with a DSA anode and an air diffusion cathode. The results showed that the UASB reactor achieved up to 70% COD removal for the highest OLR, with a low efficiency of suspended solid removal. The anaerobic effluent was treated by the SPEF process, resulting in 88% and 72% COD removal for the initial concentrations of 195 ± 14 mg L−1 and 867 ± 52 mg L−1, respectively, and a turbidity reduction of up to 80%. The treatment of wastewater by SPEF using a current density of 10 mA cm−2 was five times less costly than that of 25 mA cm−2, with an associated cost of 1.4 USD h−1 for the treatment. The proposed semicontinuous processes eliminate at least 91% of the total COD, thus representing a new option for the treatment of slaughterhouse wastewater.
Original language | English |
---|---|
Article number | 122097 |
Journal | Chemical Engineering Journal |
Volume | 378 |
DOIs | |
State | Published - 15 Dec 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 Elsevier B.V.
Keywords
- Anaerobic digestion
- Combined processes
- Slaughterhouse wastewater
- Solar photoelectro-Fenton process
- UASB reactor