Abstract
The emerging accessibility of 3D point cloud data has catalyzed the evolution of deep-learning methodologies for analysis and processing of 3D data. However, the efficacy of neural networks in this domain is often inhibited by the necessity for extensively labelled datasets. In this study, we investigate the application of self-distillation techniques based on Siamese networks, BYOL and SIMSIAM, to pre-train encoders designed for 3D point cloud processing. These pre-training regimes enable encoders to generate data representations without label reliance, potentially supporting network performance in downstream tasks. The efficacy of these learned representations was assessed using the established evaluation methodologies for pre-training: linear probing and finetuning. We also incorporate an analysis of self-supervised features in a retrieval scenario. Furthermore, the impact of these representations on subsequent applications was evaluated via transfer learning by employing pre-trained models as a foundation for standard test datasets.
| Original language | English |
|---|---|
| Title of host publication | EG 3DOR 2024 - Eurographics Workshop on 3D Object Retrieval, Short Papers |
| Editors | Dieter W. Fellner, Silvia Biasotti, Benjamin Bustos, Tobias Schreck, Ivan Sipiran, Remco C. Veltkamp |
| Publisher | Eurographics Association |
| ISBN (Electronic) | 9783038682424 |
| DOIs | |
| State | Published - 2024 |
| Event | 2024 Eurographics Workshop on 3D Object Retrieval, EG 3DOR 2024 - Santiago, Chile Duration: 26 Aug 2024 → 27 Aug 2024 |
Publication series
| Name | Eurographics Workshop on 3D Object Retrieval, EG 3DOR |
|---|---|
| ISSN (Print) | 1997-0463 |
| ISSN (Electronic) | 1997-0471 |
Conference
| Conference | 2024 Eurographics Workshop on 3D Object Retrieval, EG 3DOR 2024 |
|---|---|
| Country/Territory | Chile |
| City | Santiago |
| Period | 26/08/24 → 27/08/24 |
Bibliographical note
Publisher Copyright:© 2024 The Authors.