TY - JOUR
T1 - Rheological and structural study of salmon gelatin with controlled molecular weight
AU - Enrione, Javier
AU - Char, Cielo
AU - Pepczynska, Marzena
AU - Padilla, Cristina
AU - González-Muñoz, Adrian
AU - Olguín, Yusser
AU - Quinzio, Claudia
AU - Iturriaga, Laura
AU - Díaz-Calderón, Paulo
PY - 2020/7/1
Y1 - 2020/7/1
N2 - This study explores the molecular structuring of salmon gelatin (SG) with controlled molecular weight produced from salmon skin, and its relationship with its thermal and rheological properties. SG was produced under different pH conditions to produce samples with well-defined high (SGH), medium (SGM), and low (SGL) molecular weight. These samples were characterized in terms of their molecular weight (MW, capillary viscometry), molecular weight distribution (electrophoresis), amino acid profile, and Raman spectroscopy. These results were correlated with thermal (gelation energy) and rheological properties. SGH presented the higher MW (173 kDa) whereas SGL showed shorter gelatin polymer chains (MW < 65 kDa). Raman spectra and gelation energy suggest that amount of helical structures in gelatin is dependent on the molecular weight, which was well reflected by the higher viscosity and G0 values for SGH. Interestingly, for all the molecular weight and molecular configuration tested, SG behaved as a strong gel (tan θ < 1), despite its low viscosity and low gelation temperature (3-10 °C). Hence, the molecular structuring of SG reflected directly on the thermal and viscosity properties, but not in terms of the viscoelastic strength of gelatin produced. These results give new insights about the relationship among structural features and macromolecular properties (thermal and rheological), which is relevant to design a low viscosity biomaterial with tailored properties for specific applications.
AB - This study explores the molecular structuring of salmon gelatin (SG) with controlled molecular weight produced from salmon skin, and its relationship with its thermal and rheological properties. SG was produced under different pH conditions to produce samples with well-defined high (SGH), medium (SGM), and low (SGL) molecular weight. These samples were characterized in terms of their molecular weight (MW, capillary viscometry), molecular weight distribution (electrophoresis), amino acid profile, and Raman spectroscopy. These results were correlated with thermal (gelation energy) and rheological properties. SGH presented the higher MW (173 kDa) whereas SGL showed shorter gelatin polymer chains (MW < 65 kDa). Raman spectra and gelation energy suggest that amount of helical structures in gelatin is dependent on the molecular weight, which was well reflected by the higher viscosity and G0 values for SGH. Interestingly, for all the molecular weight and molecular configuration tested, SG behaved as a strong gel (tan θ < 1), despite its low viscosity and low gelation temperature (3-10 °C). Hence, the molecular structuring of SG reflected directly on the thermal and viscosity properties, but not in terms of the viscoelastic strength of gelatin produced. These results give new insights about the relationship among structural features and macromolecular properties (thermal and rheological), which is relevant to design a low viscosity biomaterial with tailored properties for specific applications.
KW - Helical structure
KW - Molecular weight
KW - Salmon gelatin
KW - Viscoelasticity
KW - Helical structure
KW - Molecular weight
KW - Salmon gelatin
KW - Viscoelasticity
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088322173&origin=inward
U2 - 10.3390/polym12071587
DO - 10.3390/polym12071587
M3 - Article
VL - 12
SP - 1
EP - 17
JO - Polymers
JF - Polymers
SN - 2073-4360
IS - 7
ER -