Abstract
The propagation of light pulses in dual-core nonlinear optical fibers is studied using a model proposed by Sakaguchi and Malomed. The system consists of a supercritical complex Ginzburg-Landau equation coupled to a linear equation. Our analysis includes single standing and walking solitons as well as walking trains of 3, 5, 6, and 12 solitons. For the characterization of the different scenarios, we used ensemble-averaged square displacement of the soliton trajectories and time-averaged power spectrum of the background waves. Power law spectra, indicative of turbulence, were found to be associated with random walks. The number of solitons (or their separations) can trigger anomalous random walks or totally suppress the background waves.
Translated title of the contribution | Paseos aleatorios de trenes de solitones disipativos |
---|---|
Original language | English |
Article number | 6091 |
Journal | Chaos |
Volume | 30 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2020 |
Bibliographical note
Funding Information:This work was supported by the FONDECYT-Chile (Grant No. 1200357). It is a great pleasure to dedicate this work to Professor Enrique Tirapegui on the occasion of his 80th birthday.
Publisher Copyright:
© 2020 Author(s).
Keywords
- Human experiment
- Power spectrum;
- Walking