TY - JOUR
T1 - Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles
AU - Valenzuela, Francisco
AU - Covarrubias, Cristian
AU - Martínez, Constanza
AU - Smith, Patricio
AU - Díaz-Dosque, Mario
AU - Yazdani-Pedram, Mehrdad
PY - 2012/8
Y1 - 2012/8
N2 - Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol-gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)-based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)-based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA- and nBG-based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process.
AB - Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol-gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)-based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)-based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA- and nBG-based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process.
KW - bioactive glass
KW - bioactive nanoparticles
KW - bionanocomposites
KW - bone regeneration
KW - hydroxyapatite
UR - http://www.scopus.com/inward/record.url?scp=84863725256&partnerID=8YFLogxK
U2 - 10.1002/jbm.b.32736
DO - 10.1002/jbm.b.32736
M3 - Article
C2 - 22707209
AN - SCOPUS:84863725256
SN - 1552-4973
VL - 100 B
SP - 1672
EP - 1682
JO - Journal of Biomedical Materials Research - Part B Applied Biomaterials
JF - Journal of Biomedical Materials Research - Part B Applied Biomaterials
IS - 6
ER -