Abstract
The filamentous fungus, Fusarium solani, was grown in liquid and solid culture with glucose, glycerol, 1-hexanol and n-hexane. The partition coefficient with gaseous hexane (HPC) in the biomass was lower when grown in liquid medium with 1-hexanol (0.4) than with glycerol (0.8) or glucose (1) The HPC for surface growth were 0.2 for 1-hexanol, 0.5 for glycerol, 0.6 for glucose, and 0.2 for F. solani biomass obtained from a biofilter fed with gaseous n-hexane. These values show a 200-fold increase in n-hexane solubility when compared to water (HPC = 42). Lower HPC values can be partially explained by increased lipid accumulation with 1-hexanol, 10.5% (w/w) than with glycerol (8.5% w/w) or glucose (7.1% w/w). The diameter of the hyphae diminished from 3 μm to 2 μm when F. solani was grown on solid media with gaseous n-hexane thereby doubling the surface area for gaseous substrate exchange. The surface hydrophobicity of the mycelia increased consistently with more hydrophobic substrates and the contact angle of a drop of water on the mycelial mat was 113° when grown on n-hexane as compared to 75° with glucose. The fungus thus adapts to hydrophobic conditions and these changes may explain the higher uptake of gaseous hydrophobic substances by fungi in biofilters.
Original language | English |
---|---|
Pages (from-to) | 2011-2017 |
Number of pages | 7 |
Journal | Biotechnology Letters |
Volume | 28 |
Issue number | 24 |
DOIs | |
State | Published - Dec 2006 |
Externally published | Yes |
Bibliographical note
Funding Information:Acknowledgements To Dirección de Investigación de la Universidad Católica de Temuco, Chile and OEA-LASPAU Academia and Professional Programs for the Americas for the Ph. D. scholarship of A. Vergara-Fernández and to Conacyt (Mexican Council for Science and Technology) project SEMARNAT-00120.
Keywords
- Biofiltration
- Fusarium solani
- Hydrophobicity
- Partition coefficient
- n-hexane