Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy

José Francisco Delpiano, Jorge Jara, Jan Scheer, Omar A. Ramírez, Javier Ruiz-Del-Solar, Steffen Härtel

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Optical flow approaches calculate vector fields which determine the apparent velocities of objects in timevarying image sequences. They have been analyzed extensively in computer science using both natural and synthetic video sequences. In life sciences, there is an increasing need to extract kinetic information from temporal image sequences which reveals the interplay between form and function of microscopic biological structures. In this work, we test different variational optical flow techniques to quantify the displacements of biological objects in 2D fluorescent image sequences. The accuracy of the vector fields is tested for defined displacements of fluorescent point sources in synthetic image series which mimic protein traffic in neuronal dendrites, and for GABABR1 receptor subunits in dendrites of hippocampal neurons. Our results reveal that optical flow fields predict the movement of fluorescent point sources within an error of 3% for a maximum displacement of 160 nm. Displacement of agglomerated GABABR1 receptor subunits can be predicted correctly for maximum displacements of 640 nm. Based on these results, we introduce a criteria to derive the optimum parameter combinations for the calculation of the optical flow fields in experimental images. From these results, temporal sampling frequencies for image acquisition can be derived to guarantee correct motion estimation for biological objects.

Original languageAmerican English
Pages (from-to)675-689
Number of pages15
JournalMachine Vision and Applications
Volume23
Issue number4
DOIs
StatePublished - Jul 2012

Keywords

  • Fluorescence
  • Light microscopy
  • Motion estimation
  • Optical flow

Fingerprint

Dive into the research topics of 'Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy'. Together they form a unique fingerprint.

Cite this