One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase

Juan Pablo Acevedo, Manfred T. Reetz, Juan A. Asenjo, Loreto P. Parra*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Enzymes active at low temperature are of great interest for industrial bioprocesses due to their high efficiency at a low energy cost. One of the particularities of naturally evolved cold-active enzymes is their increased enzymatic activity at low temperature, however the low thermostability presented in this type of enzymes is still a major drawback for their application in biocatalysis. Directed evolution of cold-adapted enzymes to a more thermostable version, appears as an attractive strategy to fulfill the stability and activity requirements for the industry. This paper describes the recombinant expression and characterization of a new and highly active cold-adapted xylanase from the GH-family 10 (Xyl-L), and the use of a novel one step combined directed evolution technique that comprises saturation mutagenesis and focused epPCR as a feasible semi-rational strategy to improve the thermostability. The Xyl-L enzyme was cloned from a marine-Antarctic bacterium, Psychrobacter sp. strain 2–17, recombinantly expressed in E. coli strain BL21(DE3) and characterized enzymatically. Molecular dynamic simulations using a homology model of the catalytic domain of Xyl-L were performed to detect flexible regions and residues, which are considered to be the possible structural elements that define the thermolability of this enzyme. Mutagenic libraries were designed in order to stabilize the protein introducing mutations in some of the flexible regions and residues identified. Twelve positive mutant clones were found to improve the T5015 value of the enzyme, in some cases without affecting the activity at 25 °C. The best mutant showed a 4.3 °C increase in its T5015. The efficiency of the directed evolution approach can also be expected to work in the protein engineering of stereoselectivity.

Original languageEnglish
Pages (from-to)60-70
Number of pages11
JournalEnzyme and Microbial Technology
Volume100
DOIs
StatePublished - 1 May 2017

Bibliographical note

Publisher Copyright:
© 2017 Elsevier Inc.

Keywords

  • Cold-active enzymes
  • Directed evolution
  • Thermostability
  • Xylanase
  • epPCR

Fingerprint

Dive into the research topics of 'One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase'. Together they form a unique fingerprint.

Cite this