NL-FCOS: improving FCOS through Non-Local Modules for Object Detection

Lukas Pavez*, Jose M. Saavedra*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

During the last years, we have seen significant advances in the object detection task, mainly due to the outperforming results of convolutional neural networks. In this vein, anchor-based models have achieved the best results. However, these models require prior information about the aspect and scales of target objects, needing more hyperparameters to fit. In addition, using anchors to fit bounding boxes seems far from how our visual system does the same visual task. Instead, our visual system uses the interactions of different scene parts to semantically identify objects, called perceptual grouping. An object detection methodology closer to the natural model is anchor-free detection, where models like FCOS or Centernet have shown competitive results, but these have not yet exploited the concept of perceptual grouping. Therefore, to increase the effectiveness of anchor-free models keeping the inference time low, we propose to add non-local attention (NL modules) modules to boost the feature map of the underlying backbone. NL modules implement the perceptual grouping mechanism, allowing receptive fields to cooperate in visual representation learning. We show that non-local modules combined with an FCOS head (NL-FCOS) are practical and efficient. Thus, we establish state-of-the-art performance in clothing detection and handwritten amount recognition problems.

Original languageEnglish
Title of host publication2022 26th International Conference on Pattern Recognition, ICPR 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4651-4657
Number of pages7
ISBN (Electronic)9781665490627
DOIs
StatePublished - 2022
Event26th International Conference on Pattern Recognition, ICPR 2022 - Montreal, Canada
Duration: 21 Aug 202225 Aug 2022

Publication series

NameProceedings - International Conference on Pattern Recognition
Volume2022-August
ISSN (Print)1051-4651

Conference

Conference26th International Conference on Pattern Recognition, ICPR 2022
Country/TerritoryCanada
CityMontreal
Period21/08/2225/08/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Fingerprint

Dive into the research topics of 'NL-FCOS: improving FCOS through Non-Local Modules for Object Detection'. Together they form a unique fingerprint.

Cite this