Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

Lindsey H. Remark, Kevin Leclerc, Malissa Ramsukh, Ziyan Lin, Sooyeon Lee, Backialakshmi Dharmalingam, Lauren Gillinov, Vasudev V. Nayak, Paulo El Parente, Margaux Sambon, Pablo J. Atria, Mohamed A.E. Ali, Lukasz Witek, Alesha B. Castillo, Christopher Y, Park, Ralf H. Adams, Aristotelis Tsirigos, Sophie M. Morgani, Philipp Leucht*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.

Original languageEnglish
Article number50
JournalBone Research
Volume11
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023, West China School of Stomatology Sichuan University.

Fingerprint

Dive into the research topics of 'Loss of Notch signaling in skeletal stem cells enhances bone formation with aging'. Together they form a unique fingerprint.

Cite this