Gradient expansion of the nonequilibrium potential for the supercritical Ginzburg-Landau equation

O. Descalzi*, R. Graham

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

A gradient expansion is used to obtain a Lyapunov functional (the nonequilibrium potential) for the supercritical complex Ginzburg-Landau equation. The method simplifies the task of solving the Hamilton-Jacobi equation associated with the steady-state distribution of the stochastic Ginzburg-Landau equation with weak noise and it confirms and extends results obtained previously by a more tedious calculation. The method opens the possibility for studying other situations not yet explored.

Original languageEnglish
Pages (from-to)84-90
Number of pages7
JournalPhysics Letters, Section A: General, Atomic and Solid State Physics
Volume170
Issue number2
DOIs
StatePublished - 26 Oct 1992
Externally publishedYes

Bibliographical note

Funding Information:
WewouldliketothankT.TelandE.Tirapeguiforusefuldiscussions. ThisworkwassupportedbytheDeutsche Forschungsgemeinschaft through the Sonderforschungsbereich 237 Unordnung und grol3e Fluktuationen. One of us (O.D.) wishes to thank the Deutscher Akademischer Austauschsdienst for financial support.

Fingerprint

Dive into the research topics of 'Gradient expansion of the nonequilibrium potential for the supercritical Ginzburg-Landau equation'. Together they form a unique fingerprint.

Cite this