FOXM1 Participates in Trophoblast Migration and Early Trophoblast Invasion: potential Role in Blastocyst Implantation

Reyna Peñailillo*, Victoria Velásquez*, Stephanie Acuña-Gallardo*, Felipe García*, Mario Sánchez*, Gino Nardocci*, Sebastián E. Illanes*, Lara J. Monteiro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Successful implantation requires coordinated migration and invasion of trophoblast cells into a receptive endometrium. Reduced forkhead box M1 (FOXM1) expression limits trophoblast migration and angiogenesis in choriocarcinoma cell lines, and in a rat model, placental FOXM1 protein expression was significantly upregulated in the early stages of pregnancy compared to term pregnancy. However, the precise role of FOXM1 in implantation events remains unknown. By analyzing mice blastocysts at embryonic day (E3.5), we have demonstrated that FOXM1 is expressed as early as the blastocyst stage, and it is expressed in the trophectoderm of the blastocyst. Since controlled oxygen tension is determinant for achieving normal implantation and placentation and a chronic hypoxic environment leads to shallow trophoblast invasion, we evaluated if FOXM1 expression changes in response to different oxygen tensions in the HTR-8/SVneo first trimester human trophoblast cell line and observed that FOXM1 expression was significantly higher when trophoblast cells were cultured at 3% O2, which coincides with oxygen concentrations in the uteroplacental interface at the time of implantation. Conversely, FOXM1 expression diminished in response to 1% O2 that resembles a hypoxic environment in utero. Migration and angiogenesis were assessed following FOXM1 knockdown and overexpression at 3% O2 and 1% O2, respectively, in HTR-8/SVneo cells. FOXM1 overexpression increased transmigration ability and tubule formation. Using a 3D trophoblast invasion model with trophospheres from HTR-8/SVneo cells cultured on a layer of MATRIGEL and of mesenchymal stem cells isolated from menstrual fluid, we observed that trophospheres obtained from 3D trophoblast invasion displayed higher FOXM1 expression compared with pre-invasion trophospheres. Moreover, we have also observed that FOXM1-overexpressing trophospheres increased trophoblast invasion compared with controls. HTR-8/SVneo-FOXM1-depleted cells led to a downregulation of PLK4, VEGF, and MMP2 mRNA expression. Our current findings suggest that FOXM1 participates in embryo implantation by contributing to trophoblast migration and early trophoblast invasion, by inducing transcription activation of genes involved in these processes. Maternal-fetal communication is crucial for trophoblast invasion, and maternal stromal cells may induce higher levels of FOXM1 in trophoblast cells.

Original languageEnglish
Article number1678
Pages (from-to)1-17
Number of pages17
JournalInternational Journal of Molecular Sciences
Issue number3
StatePublished - 30 Jan 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.


  • Animals
  • Cell Movement
  • Embryo Implantation
  • Female
  • Forkhead Box Protein M1/genetics
  • Humans
  • Mice
  • Oxygen/metabolism
  • Placenta/metabolism
  • Pregnancy
  • Protein Serine-Threonine Kinases/metabolism
  • Rats
  • Trophoblasts/metabolism


Dive into the research topics of 'FOXM1 Participates in Trophoblast Migration and Early Trophoblast Invasion: potential Role in Blastocyst Implantation'. Together they form a unique fingerprint.

Cite this