Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda

Koen W. De Bock*, Kristof Coussement, Arno De Caigny, Roman Słowiński, Bart Baesens, Robert N. Boute, Tsan Ming Choi, Dursun Delen, Mathias Kraus, Stefan Lessmann, Sebastián Maldonado, David Martens, María Óskarsdóttir, Carla Vairetti, Wouter Verbeke, Richard Weber

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The ability to understand and explain the outcomes of data analysis methods, with regard to aiding decision-making, has become a critical requirement for many applications. For example, in operational research domains, data analytics have long been promoted as a way to enhance decision-making. This study proposes a comprehensive, normative framework to define explainable artificial intelligence (XAI) for operational research (XAIOR) as a reconciliation of three subdimensions that constitute its requirements: performance, attributable, and responsible analytics. In turn, this article offers in-depth overviews of how XAIOR can be deployed through various methods with respect to distinct domains and applications. Finally, an agenda for future XAIOR research is defined.

Original languageEnglish
JournalEuropean Journal of Operational Research
StateAccepted/In press - 2023

Bibliographical note

Funding Information:
The authors acknowledge all researchers who, through their work, have advocated and accelerated the adoption of (explainable) analytics in OR. The research of Roman Slowiński was supported by TAILOR, a project funded by the EU Horizon 2020 (research and innovation funding) programme (EC GA number 952215 ). Sebastián Maldonado, Carla Vairetti, and Richard Weber acknowledge financial support from FONDECYT Chile (Grants 1200221, 11200007, and 1221562), Fondef (IT23I0061), ANID PIA/PUENTE (AFB220003), and NeEDS, a project funded by the EU Horizon 2020 programme (EC GA number 822214 ).

Publisher Copyright:
© 2023 Elsevier B.V.


  • Decision analysis
  • Explainable artificial intelligence
  • Interpretable machine learning
  • XAI


Dive into the research topics of 'Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda'. Together they form a unique fingerprint.

Cite this