Abstract
Uncertainties in finite element (FE) model updating arise from two main sources: measurement noise and modeling errors. The latter includes model parameter uncertainty and model uncertainty itself. Among these sources of uncertainty, model uncertainty has been proven to be the most influential source of error in FE model updating, which is particularly important when using the updated model for damage identification (DID) purposes. This paper investigates the effects of model uncertainty when updating mechanics-based nonlinear FE models of building structures subjected to earthquake excitation. To solve the parameter estimation problem, the unscented Kalman filter is used as parameter estimation tool. Numerically simulated response data of two state-of-the-art nonlinear FE models of building structures designed according to modern design codes are used as application examples. A two-dimensional steel building and a three-dimensional reinforced concrete building, both subjected to seismic base excitation, are analyzed for different types and levels of model uncertainty. The results show that model uncertainty may have significant detrimental effects when using the updated FE model for DID, chiefly in the case of large modeling uncertainty. Although a good match between the measured (observed) and FE predicted responses is usually achieved, unobserved responses at global and local levels often show significant errors.
Original language | English |
---|---|
Article number | e2297 |
Journal | Structural Control and Health Monitoring |
Volume | 26 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2019 |
Bibliographical note
Funding Information:The authors acknowledge the financial support from the Chilean National Commission for Scientific and Technological Research (CONICYT), FONDECYT project 11160009.
Publisher Copyright:
© 2018 John Wiley & Sons, Ltd.
Keywords
- damage identification
- finite element model updating
- model uncertainty
- nonlinear finite element model
- unscented Kalman filter