Detailed analysis of transitions in the CO oxidation on palladium(111) under noisy conditions

Jaime Cisternas*, Stefan Wehner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

It has been shown that CO oxidation on Pd(111) under ultrahigh vacuum conditions can suffer rare transitions between two stable states triggered by weak intrinsic perturbations. Here we study the effects of adding controlled noise by varying the concentrations of O2 and CO that feed the vacuum chamber, while the total flux stays constant. In addition to the regime of rare transitions between states of different CO2 reaction rates induced by intrinsic fluctuations, we found three distinct effects of external noise depending on its strength: small noise suppresses transitions and stabilizes the upper rate state; medium noise induces bursting; and large noise gives rise to reversible transitions in both directions. To explain some of the features present in the dynamics, we propose an extended stochastic model that includes a global coupling through the gas phase to account for the removal of CO gas caused by the adsorption of the Pd surface. The numerical simulations based in the model show a qualitative agreement with the noise-induced transitions found in experiments, but suggest that more complex spatial phenomena are present in the observed fluctuations.

Translated title of the contributionAnálisis detallado de las transiciones en la oxidación del CO en paladio (111) en condiciones ruidosas
Original languageEnglish
Article number044706
JournalJournal of Chemical Physics
Volume149
Issue number4
DOIs
StatePublished - 28 Jul 2018

Bibliographical note

Funding Information:
The authors thank Jürgen Küppers for enabling these research opportunities and Stefan Karpitschka for the software used and for basic studies without noise. J.C. thanks the financial support of FONDECYT Project No. 1170460.

Publisher Copyright:
© 2018 Author(s).

Fingerprint

Dive into the research topics of 'Detailed analysis of transitions in the CO oxidation on palladium(111) under noisy conditions'. Together they form a unique fingerprint.

Cite this