TY - JOUR

T1 - Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry

AU - Descalzi, Orazio

AU - Cisternas, Jaime

AU - Brand, Helmut R.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - We study the interaction of counterpropagating pulse solutions for two coupled complex cubic-quintic Ginzburg-Landau equations in an annular geometry. For small approach velocity we find as an outcome of such collisions several results including zigzag bound pulses, stationary bound states of 2π holes, zigzag 2π holes, stationary bound states of π holes, zigzag bound states of π holes, propagating 2π holes, and propagating π holes as the real part of the cubic cross coupling between the counterpropagating waves is increased. We characterize in detail the collisions giving rise to the three states involving π holes as an outcome.

AB - We study the interaction of counterpropagating pulse solutions for two coupled complex cubic-quintic Ginzburg-Landau equations in an annular geometry. For small approach velocity we find as an outcome of such collisions several results including zigzag bound pulses, stationary bound states of 2π holes, zigzag 2π holes, stationary bound states of π holes, zigzag bound states of π holes, propagating 2π holes, and propagating π holes as the real part of the cubic cross coupling between the counterpropagating waves is increased. We characterize in detail the collisions giving rise to the three states involving π holes as an outcome.

UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33845591396&origin=inward

UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=33845591396&origin=inward

U2 - 10.1103/PhysRevE.74.065201

DO - 10.1103/PhysRevE.74.065201

M3 - Article

VL - 74

JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

SN - 1539-3755

IS - 6

ER -