TY - JOUR
T1 - Citral encapsulation for an antimicrobial natural powdered-additive
T2 - Performance of wall material and drying process
AU - Alarcón-Moyano, Jessica Katherine
AU - Herrera, María Lidia
AU - Matiacevich, Silvia Beatriz
N1 - Publisher Copyright:
© 2023 AOCS.
PY - 2024/6
Y1 - 2024/6
N2 - Citral encapsulation was analyzed by spray and freeze-drying to obtain an antimicrobial additive in powder. Different formulations containing alginate and modified starch (Capsul®) as encapsulating agents (1% and 3% w/w, respectively) and maltodextrin as a wall material at different concentrations (varied from 1:1–1:4 Citral:Maltodextrin) were prepared. The powders were evaluated for physical and antimicrobial properties against Escherichia coli to obtain a natural antimicrobial food additive. Citral:Capsul:Maltodextrin powders obtained by spray-drying showed the best physical properties, considering encapsulation yield (EY) (75%–80%), encapsulation efficiency (EE) (~78%), and particle size (5–10 μm), and a higher microbial inhibition at a lower additive concentration (1.5%–2% w/w), independently of maltodextrin concentration used. Powders obtained by freeze-drying emulsions showed an EY ~70%, EE ~70%, particle sizes between 80 and 1250 μm, and a higher percentage of rehydration for antimicrobial activity (2.5%–4% w/w). An increase in maltodextrin concentration led to a decrease in %EE, an increase in particle size, and the powder concentration required to inhibit microbial growth. Therefore, the formulation 1:1:1 Citral:Capsul:Maltodextrin showed by spray-drying showed the best characteristics to obtain a natural antimicrobial additive.
AB - Citral encapsulation was analyzed by spray and freeze-drying to obtain an antimicrobial additive in powder. Different formulations containing alginate and modified starch (Capsul®) as encapsulating agents (1% and 3% w/w, respectively) and maltodextrin as a wall material at different concentrations (varied from 1:1–1:4 Citral:Maltodextrin) were prepared. The powders were evaluated for physical and antimicrobial properties against Escherichia coli to obtain a natural antimicrobial food additive. Citral:Capsul:Maltodextrin powders obtained by spray-drying showed the best physical properties, considering encapsulation yield (EY) (75%–80%), encapsulation efficiency (EE) (~78%), and particle size (5–10 μm), and a higher microbial inhibition at a lower additive concentration (1.5%–2% w/w), independently of maltodextrin concentration used. Powders obtained by freeze-drying emulsions showed an EY ~70%, EE ~70%, particle sizes between 80 and 1250 μm, and a higher percentage of rehydration for antimicrobial activity (2.5%–4% w/w). An increase in maltodextrin concentration led to a decrease in %EE, an increase in particle size, and the powder concentration required to inhibit microbial growth. Therefore, the formulation 1:1:1 Citral:Capsul:Maltodextrin showed by spray-drying showed the best characteristics to obtain a natural antimicrobial additive.
KW - citral
KW - encapsulation
KW - freeze-drying
KW - maltodextrin
KW - spray-drying
UR - https://www.scopus.com/pages/publications/85180917826
U2 - 10.1002/aocs.12806
DO - 10.1002/aocs.12806
M3 - Article
AN - SCOPUS:85180917826
SN - 0003-021X
VL - 101
SP - 613
EP - 624
JO - JAOCS, Journal of the American Oil Chemists' Society
JF - JAOCS, Journal of the American Oil Chemists' Society
IS - 6
ER -