Benzimidazole-Derived B2 as a Fluorescent Probe for Bacterial Outer Membrane Vesicle (OMV) Labeling: Integrating DFT, Molecular Dynamics, Flow Cytometry, and Confocal Microscopy

Francisco Parra, Alexander Carreño*, Evys Ancede-Gallardo, Diana Majluf, Jorge A. Soto, Romina V. Sepúlveda, Daniel Aguayo, María Carolina Otero, Iván L. Calderón, Fernando Gil, Juan A. Fuentes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Bacterial outer membrane vesicles (OMVs) are nanoscale extracellular structures produced by Gram-negative bacteria that are critical for microbial biology and host-pathogen interactions and have great potential in biotechnological applications. Despite the availability of fluorescent dyes for OMV studies, many are repurposed from eukaryotic extracellular vesicle research and are not explicitly optimized for OMVs, leading to challenges in achieving consistent labeling, minimizing background noise, and preserving vesicle integrity during analyses. This study evaluates B2, a benzimidazole-derived fluorophore, for OMV labeling in advanced techniques like flow cytometry and confocal microscopy. OMVs were isolated from Escherichia coli strains BL21 and O157, and their integrity was confirmed using transmission electron microscopy (TEM). B2 staining protocols were optimized for OMVs, and fluorescence analyses revealed specific interactions with the vesicle membranes, reducing aggregation and enhancing signal uniformity. Flow cytometry indicated near-complete labeling efficiency (98–100%) with minimal background interference. Confocal microscopy further validated B2’s effectiveness, showing evident OMV internalization into epithelial HT-29 cells and compatibility with other fluorophores. Density functional theory (DFT) calculations, including Fukui function analysis, identified key electrophilic and nucleophilic regions in B2 that facilitate specific hydrogen bonding and polar interactions with membrane components. Non-covalent interaction (NCI) analysis revealed pronounced intramolecular hydrogen bonding along with discrete regions of weak van der Waals interactions. Molecular dynamics simulations suggest that B2 exhibits an affinity for both the hydrophobic core of the lipid bilayer and the core oligosaccharide region of the LPS layer, which collectively ensures sustained retention of the dye. The findings presented in this study position B2 as a valuable fluorophore for OMV research.

Original languageEnglish
Article number4682
JournalInternational Journal of Molecular Sciences
Volume26
Issue number10
DOIs
StatePublished - May 2025

Bibliographical note

Publisher Copyright:
© 2025 by the authors.

Keywords

  • OMVs
  • benzimidazole compound B2
  • confocal microscopy
  • flow cytometry
  • fluorescent dyes
  • fluorescent labeling of OMVs
  • intramolecular hydrogen bond
  • outer membrane vesicles

Fingerprint

Dive into the research topics of 'Benzimidazole-Derived B2 as a Fluorescent Probe for Bacterial Outer Membrane Vesicle (OMV) Labeling: Integrating DFT, Molecular Dynamics, Flow Cytometry, and Confocal Microscopy'. Together they form a unique fingerprint.

Cite this