Abstract
We analyze the angle-of-arrival variance of an expanded and collimated laser beam after it has traveled through indoor convective turbulence. A continuous position detector is set at the focus of a lens collecting the light coming from this collimated laser beam. The effect of the different turbulent scales, above the inner scale, is studied changing the diameter of a circular pupil before the lens. The experimental setup follows the design introduced by Masciadri and Vernin (Appl. Opt., Vol. 36, No 6, pp. 1320-1327, February 2004). Tilt data measurements are studied within the fractional Brownian motion model for the turbulent wave-front phase. In a previous paper the turbulent wave-front phase was modeled by using this stochastic process (J. Opt. Soc. Am. A, Vol. 21,No 10, pp. 1962-1969, October 2004). The Hurst exponents associated to the different degree of turbulence are obtained from the new D2H-2 dependence.
Original language | American English |
---|---|
DOIs | |
State | Published - 1 Dec 2006 |
Externally published | Yes |
Event | Proceedings of SPIE - The International Society for Optical Engineering - Duration: 1 Jan 2019 → … |
Conference
Conference | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Period | 1/01/19 → … |
Keywords
- Fractional brownian motion
- Hurst exponent
- Non-Kolmogorov turbulence
- Turbulent wave-front phase