Analyzing olfactory neuron precursors non-invasively isolated through nadh flim as a potential tool to study oxidative stress in alzheimer’s disease

Laura Gómez-Virgilio, Alejandro Luarte, Daniela P. Ponce, Bárbara A. Bruna, María I. Behrens*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

7 Scopus citations

Abstract

Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.

Original languageEnglish
Article number6311
JournalInternational Journal of Molecular Sciences
Volume22
Issue number12
DOIs
StatePublished - 2 Jun 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Alzheimer’s disease
  • FLIM
  • Oxidative stress

Fingerprint

Dive into the research topics of 'Analyzing olfactory neuron precursors non-invasively isolated through nadh flim as a potential tool to study oxidative stress in alzheimer’s disease'. Together they form a unique fingerprint.

Cite this