A circuitry and biochemical basis for tuberous sclerosis symptoms: From epilepsy to neurocognitive deficits

David M. Feliciano, Tiffany V. Lin, Nathaniel W. Hartman, Christopher M. Bartley, Cathryn Kubera, Lawrence Hsieh, Carlos Lafourcade, Rachel A. O'Keefe, Angelique Bordey*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

71 Scopus citations

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR). Here, we explore the cytoarchitectural and functional CNS aberrations that may account for the neurological presentations of TSC, notably seizures, hydrocephalus, and cognitive and psychological impairments. In particular, recent mouse models of brain lesions are presented with an emphasis on using electroporation to allow the generation of discrete lesions resulting from loss of heterozygosity during perinatal development. Cortical lesions are thought to contribute to epileptogenesis and worsening of cognitive defects. However, it has recently been suggested that being born with a mutant allele without loss of heterozygosity and associated cortical lesions is sufficient to generate cognitive and neuropsychiatric problems. We will thus discuss the function of mTOR hyperactivity on neuronal circuit formation and the potential consequences of being born heterozygous on neuronal function and the biochemistry of synaptic plasticity, the cellular substrate of learning and memory. Ultimately, a major goal of TSC research is to identify the cellular and molecular mechanisms downstream of mTOR underlying the neurological manifestations observed in TSC patients and identify novel therapeutic targets to prevent the formation of brain lesions and restore neuronal function.

Original languageEnglish
Pages (from-to)667-678
Number of pages12
JournalInternational Journal of Developmental Neuroscience
Volume31
Issue number7
DOIs
StatePublished - Nov 2013
Externally publishedYes

Bibliographical note

Funding Information:
This work was supported by a Department of Defense grant (Idea development award, W81XWH-10-1-0041), a McKnight Disorder award, a CT Stem Cell grant (A.B.), a National Institute of Health NRSA 10668225 (D.M.F) and NIH MSTP TG T32GM07205 (C.M.B.).

Keywords

  • Autism
  • Dendrite
  • Differentiation
  • Epilepsy
  • FMRP
  • MTOR
  • Mental retardation
  • Migration
  • Neurogenesis
  • Progenitor cell
  • SEGA
  • Seizures
  • Spine
  • Stem cell
  • Tuber
  • Tuberous sclerosis complex

Fingerprint

Dive into the research topics of 'A circuitry and biochemical basis for tuberous sclerosis symptoms: From epilepsy to neurocognitive deficits'. Together they form a unique fingerprint.

Cite this